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and SN-EI) were calculated by evaluating the partition 
functions from the eigenstates determined in this study. 
Smix

r is based on 78.4% inner and 21.6% outer ro-
tamers. 

It is seen that the spectroscopic entropy is 1.44 eu 
greater than the heat capacity value. This excess may 
interpreted as evidence for residual entropy in meth­
ylhydrazine at O0K. In particular, if it is assumed 
that 5mix° (= R In 2), the entropy of mixing of optical 
isomers, is present at O0K, then the spectroscopic en­
tropy agrees with the heat capacity value to within ex­
perimental error. 

Conclusion 

In this paper we have utilized an approximate quan­
tum mechanical method to determine the shape of the 
barrier hindering the torsion about the N-N bond in 
methylhydrazine. We have determined the first six 
Fourier coefficients which may be used to describe this 
barrier and have presented a reasonable explanation for 
the far-infrared torsional spectrum of the molecule. 

I n transient chemical relaxation techniques a reaction 
solution at equilibrium is perturbed by a rapid 

change in some external variable, such as temperature 
or pressure.1 If the perturbation is sufficiently small, 
the time dependence of the reactant concentrations is 
characterized by a series of exponential decays. Relaxa­
tion amplitudes, or the net signal changes associated 
with the observed exponentials, are measures of equilib­
rium shifts and can be used to determine thermody­
namic functions (AH, AV, etc.) for elementary reaction 
steps. Amplitudes are also related to the question of 
whether a relaxation process is observable and can serve 
as a check on a mechanism suggested by kinetic infor­
mation. 

The general thermodynamic relations governing 
chemical relaxation have been developed by Eigen and 
DeMaeyer,' who discuss a "normal mode" analysis 

(1) M. Eigen and L. DeMaeyer, "Techniques of Organic Chemistry," 
Vol. VIII, 2nd ed, Part 2, S. L. Friess, E. S. Lewis, and A. Weissberger, 
Ed., Wiley, New York, N. Y., 1963, p 895. 

(2) G. H. Czerlinski, "Chemical Relaxation," Marcel Dekker, New 
York, N. Y., 1966. 

Using our barrier description we have reexamined the 
entropy of methylhydrazine and have found our results 
to be consistent with the entropy determined experi­
mentally from heat capacity measurements. 

Currently in our laboratory we are reexamining the 
torsional barrier in the parent hydrazine molecule. 
Kasuya16 attempted to determine this barrier, but the 
model used was an incorrect one which assumed the 
cis and trans barriers to be equal. We are attempting 
to obtain a more satisfactory barrier description by (1) 
utilizing additional Fourier terms in the potential energy 
expression for the barrier, and (2) combining the re­
sults of the microwave16 and far infrared25 studies of 
the molecule. 
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(25) A. Yamaguchi, I. Ichishima, T. Shimanouchi, and S. Mizushima, 
Spectrochim. Acta, 16, 1471 (1966). 

of relaxation amplitudes. Czerlinski,2 in a different 
approach, has derived amplitude expressions for quite 
a number of mechanisms in which the elementary steps 
equilibrate at very different rates. 

For multistep mechanisms the equations relating 
thermodynamic parameters and relaxation amplitudes 
are often numerically complex, and their derivations 
can be tedious. In the present paper such relations are 
considered for systems of two coupled equilibria. 
Equations are developed allowing one to set down, 
merely by inspection of the stoichiometry, the relation 
between the overall change in signal induced by a 
physical perturbation, and the thermodynamic parame­
ters associated with the elementary steps. It is shown 
that expressions for individual relaxation amplitudes can 
also be calculated by inspection. The treatment in­
cludes the case where a strong kinetic coupling exists 
between the two equilibria. Practical applications are 
cited involving the determination of enthalpies for the 
fixation of the competitive inhibitors proflavin and 
benzamidine to trypsin. 

Relaxation Amplitudes for Systems of Two Coupled Equilibria 
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Abstract: Equations are developed allowing one to set down, merely by inspection of the stoichiometry, the rela­
tion between the overall change in signal following the perturbation of a system of two coupled equilibria and the 
thermodynamic functions associated with the elementary steps. It is shown that expressions for individual 
relaxation amplitudes can also be calculated by inspection. The treatment includes the case where a strong kinetic 
coupling exists between the two equilibria. Applications are cited involving the determination of enthalpies for the 
fixation of the competitive inhibitors proflavin and benzamidine to trypsin. 
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Relaxation Amplitude Expressions for 
One-Step Reactions 

The "instantaneous" perturbation of a one-step equi­
librium system is followed by an exponential change in 
reactant concentrations.1 If P is a physical property 
linearly proportional to the concentration of each chem­
ical component (e.g., conductance, absorbance, op­
tical rotation) the time dependence of the observed re­
laxation effect is 

dPU) = SP°exp(-//T) (D 
where T is the relaxation time, SP «> is the instantaneous 
deviation of P from its (final) equilibrium value, and 
SP0, the relaxation amplitude, is the net change in P 
due to the chemical relaxation process. It can be shown 
from mass conservation considerations that the relaxa­
tion amplitude is related to the overall shift in the equi­
librium concentration of the rth component by eq 2. 

5P° = A^(SdJv1) (2) 

The <j>iS are proportional to specific conductivities, 
extinction coefficients, specific optical rotations, etc. 
The ViS are stoichiometric coefficients, defined as nega­
tive for participants on the left side of the reaction equa­
tion and positive for those on the right side.3 Although 
the sum of stoichiometric coefficients appearing on 
either side of the reaction equation will rarely exceed a 
value of 2 for elementary processes in solution, higher 
order reactions are found if the overall transformation 
proceeds through intermediates present in undetectable 
amounts (e.g., (6) of Table II. 1, ref 1). Eigen and De-
Maeyer have shown that SCt for a one-step equilibrium 
is related to equilibrium concentrations and the forced 
change in the equilibrium constant by a rather simple 
expression4 

where 

dd = ViTS In K 

K = Tier 
T = 1/2><VG 

(3) 

(4) 

(5) 

5 In AT is proportional to the relevant thermodynamic 
function. For example, in the case of a temperature 
jump3 

5 In K = (AH/RT*)ST (6) 

AH = Y^ViHi (7) 

where H1 is the partial molar enthalpy of species i, and 

ST = (T„ — T0) = temperature change (8) 

The following useful relation is obtained from eq 2 and 
3. 

5P° = A<j>TS In K (9) 

If the equilibrium constant and A<f> are known, 6 In K 
(and therefore the thermodynamic function) can be con­
veniently evaluated by plotting SP0 vs. T. 

(3) Reference I1 p 928. 
(4) We neglect here considerations of activity coefficients and volume 

changes. Concentration units are assumed to be moles per liter. See 
ref 1, eqll.3.18 and II.3.24. 

It is evident from eq 5 that the appropriate T function 
can be written by simply examining the reaction stoi-
chiometry. Thus, for the temperature perturbation of 
a dimerization equilibrium 

2A -«-»- A2 (10) 

the relaxation amplitude is 

5P° = A0[(4/A) + (1/A2)]- XAHjRT^)ST (11) 

A<j> = (0A! - 20A); AH = (HM - 2HA) (12) 

Table I lists some T functions for other one-step equi-

Table I. T Functions for Some One-Step Reaction Systems 

System r« 
•A' 

A + B — AB 

Limiting case 
B0, \/K» A° 

2 A - A 2 

^7(1 + 11K) 
KA0I(I + KY 
AVd + K)[I + 0IK)] 

IBl[A + B + (UK)] 
ABI[K(A + B) + 1] 
[(I - 4P/S2)-'A - l]/2Jf 

S = A" + B" + \/K 
P = A<>B<> 

KAOB0I(I + B0KY 
A0I(I + B0K)[I + (B0IK)] 

AV[4I + (1/K)] 
1 + 4KA° - (1 + SKA0)'/'/ 

SK(X + SA0K)1/' 

° The superscript (0) indicates analytical concentrations. 

libria. Examples of practical applications are found 
in ref 5-7. 

Thermodynamic Relations for Two Coupled Equilibria 

Now consider Scheme I for two consecutive equilibria 

Scheme I 

O3A3 

O1A1 + a2A2 - - - v cAC 

CBC - ? — JI1B1 + 62B2 

63B3 

coupled via a common intermediate, C, where C, the 
Aj's, and the B4's are all different chemical species. The 
equilibrium constants are here defined as 

KA = AfC^i'AiM2 

K3 = Es
b>Cc*/E1^E2* 

(13) 

(14) 

and the two microscopic enthalpies are given by 

AHA = azHA3 + cAHc - aiHAl - a2HA, 

AHB = bsHBl + cBHc - b,HBl - b2HBl 

Taking logarithms and then differentials of the KA 

and KB expressions (eq 13) yields 

n „ 5Ai . 5A2 5A3 SC .... 
- 5 In KA = oi -j + a2 -j+ - a% -j-' - cA -= (15) 

Ai Zi2 A3 L 

-SInK3 
SB1 SE2 SE3 SC 

b\ g— + b2 g— — b3 -g- — cB - J (16) 

(5) G. G. Hammes and W. Knoche, J. Chetn. Phys., 45,4041 (1966). 
(6) R. Winkler, Doctoral Thesis, Gottingen, 1969. 
(7) F. Guillain and D. Thusius, J. Amer. Chem. Soc, 92, 5534 (1970). 
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Scheme I is characterized by the following mass con­
servation restrictions 

8A1[CIi = 8A2[Ci2 = -SAz/a, (17) 

SBi/b, = 8B2Jb2 = -8B,/bt (18) 

-SC = (cjJaOSAi + (cB[bi)8Ei (19) 

Equat ions 15 and 16 can be expressed in terms of any 
two concentrat ion variables, 8At and 8C, 8Bt and 8C, 
or6y4<and5Si. It will be seen below that the latter pair 
leads to particularly useful expressions. If SAi and 
8Bi are chosen as variables, eq 15 and 16 reduce to 

-51n*A = [_X+X+X3
 + 

C 
8Ai 

CACB SBX 

C ~bi 

r v w b_i 
|_ 5 i B2 B3 + 

CB_S" |«5I 

(20) 

(21) 

The sums of concentration terms multiplied by 8AiIa1 

in eq 20 and by 8BiIbx in eq 21 are simply the reciprocal 
T functions for equilibrium A and B, respectively. 
These equations are conveniently expressed in matrix 
form as 

5 In KA!, 

8 In KB\ [CACB[C 

CACB[C] 

T B - 1 I 

SAi/ai 

8BiIbx 

(22) 

8Ai and 8Bx can be expressed as linear functions of the 
5 In K's by taking the inverse of the above matrix. 
Multiplying numerator and denominator of the re­
sulting equations by r A r B yields the symmetric relations 

8Ai/ai = rA 
i - rArB/' 

[8 In KA-(TBf)8 In KB] (23) 

8B1Ib1 = -
l - r A r B / 2 ' 

/ = CACBI C 

[8\nKB-{TAf)8\nKA] (24) 

(25) 

Equat ions 23 and 24, together with the mass conserva­
tion restrictions of eq 17-19, give a complete descrip­
tion of the total changes in equilibrium concentrations 
brought about by small changes in the values of In KA 

and In KB. A more general derivation of eq 23 and 24 
is found in Appendix I. 

Even when all stoichiometric coefficients are equal 
to unity, Scheme I breaks down into ten different sub-
schemes.8 The advantage of formulating 5Ai and 5Bi 
in terms of r ' s and cAcB/C is that expressions for overall 
changes in equilibrium concentrations can be set down 
merely by an examination of the mechanism. In ad­
dition, the formalism of eq 23-24 allows one to readily 
note conditions leading to maximum and minimum 
thermodynamic coupling between the two steps. 
The dimensionless terms cAcBTA/C and c A c B r B / C may 
be considered "coupling constants ." These terms ap­
proach the following limiting values at relatively low 
and high concentrations of the coupling species 
(Amia (Bm i n) and A m a x (Bm a x) represent respectively the 
least and most highly populated A4 (B4) participant). 

(8) G. H . Czerlinski, J. Theor, Biol,, 7, 463 (1964). 

Case I 

C«A min 

CACBTA/C — > CB/cA 

Case II 

C J£> Amllx 

CACBTA[C —+ 0 

C«Bn 

CACBTB[C —i 

C»BD 

CACBTB[C -

CA/CB 

0 

It will be noted that when both limiting conditions of 
case I are satisfied, component C will exist in a "steady 
s ta te" and Scheme I should be formally treated as a 
one-step reaction. When the coupling is at a minimum 
(C "buffering"), the elementary steps equilibrate inde­
pendently and eq 23-24 reduce to the amplitude expres­
sions expected for the isolated reactions 

Case II 

8Ai[ai—> -TA8 In KA (26) 

8Bi/bi—*-TB8 \r\ KB (27) 

An interesting family of reactions (Scheme II) in-

Scheme II 

AiAi + O2A2 -r—*- CIACI + C 2 A C 2 

C I B Q + C2BC 2 -<:—*- AlBi + biBt 

volving two coupling components is derived from 
Scheme I by setting C = C1. and A3 = B3 = C2. Us­
ing the approach already described, it can be shown 
that 8Ai and 5Bi are again given by eq 23-24, but the 
term cAcB[C is replaced by the sum 

/ = CIACIB[CI + c2Ac2BjC2 (28) 

Equation 28 also applies to the following cyclic system, 
which is derived from Scheme I by setting C = C2 and 
A2 = B2 = Ci. Scheme III and its submechanisms 

Scheme III 
O1A1 O3A3 

X 
ClACl C2AC2 

C I B C I C2BC2 

X 
6,B1 b3B3 

KA 

Ku 

are particularly interesting with respect to enzyme redox 
reactions.8 

Some representative calculations of coupling con­
stants are given in Table II. The examples are typical 
enzyme-substrate systems. It will be noted that the 
coupling constants are rather simple functions of equi­
librium concentrations and equilibrium constants. 

Overall Relaxation Amplitudes. An Application 
Involving the Determination of Reaction Enthalpies 
for Two Coupled Second-Order Reactions 

It can be shown that for the systems under considera­
tion the induced overall change in an observed physi­
cal property is9 

-5Ptot° = Acj>A(8Ai/ai) + A0B(83i/*i) (29) 

(9) If changes in A<£A,B or volume are significant, additional terms 
must be added to eq 29. 
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Table II. Examples of Coupling Constants for Some Typical 
Enzyme-Substrate Interactions 

Example 

Scheme I 

Scheme I 

Scheme III 

Reaction system 

E + S •*' • ES — ^ - (ES)' 

E, - K ' - 2E 

E + S-—i1-*-ES 

ES2 . K ' . E + 2S 

E"^~-*ES 

Coupling constants0 

TjJ T B / 

1 

1 + KA(E + S) 

2£ 

4E + Kf. 

2E + S 
HE)(S) + S' + XA 

1 + KAS 

1 + K/,(E + S) 

1 
i + * B 

2 S 
E + S + KB 

2E + S 
E + S + KB 

1 + KBP 

1 + KB(E + P) 

"f = XCiXCihlCi. 

A<f>A = Q03A, + CA4>C - G1(Ji)A1 - a24>A2 (30) 

A<f>B = * 3 0 B , — cB</>c + b\4>-Bi — b24>Bt (31) 

Since 5A1 and S5i are linear functions of 5 In KA and 5 
In KB, SPtot0 is also a linear function of these parameters, 
or, from eq 23, 24, and 29 

X1 = 

X2 = 

5PtOt" = « 1 ^ 1 + «2^2 

«i = 5 In KA; a2 = 5 In VCB 

rA 

l - rArB/2 

T B 

l - rArB/2 

(A(^A - rB/A<^B) 

(A(/>B - rA/A</>A) 

(32) 

(33) 

(34) 

(35) 

If the A0's and equilibrium constants are known with 
sufficient precision, on and a2 (and therefore the relevant 
thermodynamic functions) can be evaluated by measur­
ing SPtot0 at various values of {Xu X2] (where {Xi, X2] is 
varied by changing analytical concentrations) and fitting 
the results to eq 32 using a multilinear least-squares pro­
cedure.10 

As an example, consider the case of two inhibitors 
(I, D) competing for the active site of enzyme E . l l As­
sume that E, I, and EI do not absorb (A<£B = O) and 
that D is a dye which undergoes a significant change 
in absorbance upon binding to enzyme. Scheme IV 

Scheme IV 

ED > EI 

KK = E-DJED 

KB = E-IJEl 

is a sub-mechanism of Scheme I, and therefore / = 
cAcBjC = l/E. It follows immediately from eq 32-
35 that the overall amplitude may be formulated as12 

•5 / to t7 /° = OLi'X1 + OL2
1X2 (36) 

(10) For a pertinent review of statistical methods, see W. W. Cleland, 
Advan. Enzymol. Relat. Subj. Biochem., 29, 1 (1967). 

(11) The kinetics and thermodynamics of this type of reaction system 
have also recently been discussed elsewhere: (a) G. H. Czerlinski in 
"Theoretical and Experimental Biophysics," Vol. 2, A. Cole, Ed., Mar­
cel Dekker, New York, N. Y., 1969, p 106, (b) ref 6; (c) ref 7. 

(12) Usually differences in transmission are measured. If 5///» « 
0.1, the change in OD is approximated by SOD = -57/(2.3)7°. De­
tailed discussions of the relationships between measured signal changes 
and optical properties are found in ref 1 (pp 973-976) and 2 (Chapter 

where P is the intensity of transmitted light at t = 0, 
SVtot0 is the overall deviation from V0, the regression 
coefficients to be determined, a\ and a2', are 2.3(eD — 
«ED)/5 In KA and 2.3(eD — «ED)/8 In KB, respectively, 
and the independent variables are 

Xi = 
l - rArB/£2' 

£Xi (37) 

The r ' s are readily given as explicit functions of equi­
librium concentrations (Table I). For example 

rA = 
E-D 

E + D + KA' rB = ^ 
E-I 

E+ I + VCE 
(38) 

In practice, it would be convenient to keep total con­
centrations of E and D constant, and "titrate" the E-D 
mixture by measuring the overall amplitude after suc­
cessive additions of component I. 

In this way the author has determined, using the tem­
perature-jump technique, reaction enthalpies for the 
fixation of the competitive inhibitors benzamidine (non-
chromophoric) and proflavin (chromophoric) to the 
enzyme trypsin. The proflavin equilibrium constant 
(VCA) and the parameter (eD — eED)469 were determined 
by a classical spectrophotometric titration.7 The benz­
amidine equilibrium constant (VCB) was determined by 
adding benzamidine to a trypsin-proflavin solution 
and measuring the decrease in OD469.7 A method of 
successive approximations was used to calculate the 
equilibrium concentrations E, D, and I in the tempera­
ture-jump experiments, which in turn were used to calcu­
late Xi and X2.

13 The results of the amplitude titration 
are presented in Figure 1. Since the experimental error 
was due mostly to a constant uncertainty in 5Vtot° 
(background noise), a weighting factor of unity was 
assumed in the least-squares analysis.10 All calcula­
tions were programmed for a Wang desk-top calculator. 

It is interesting that if one treats the overall amplitude 
expression as a multiple-regression problem, both re­
action enthalpies can be evaluated from a single titra­
tion. Also to be noted is the ease with which rather 
small reaction enthalpies can be determined using the 
temperature-jump technique in comparison with the 
usual determination of K at different temperatures.14 

Although the application cited here involved an in­
dependent determination of KB, prior knowledge of 
this parameter is not necessary if a rough estimate is 
available. Then the least-squares program for the 
titration can be modified to calculate the nonlinear co­
efficient KB, in addition to the linear terms 5 In KA and 
5 In VCB, by an iterative procedure.10 However, to ob­
tain values for the thermodynamic parameters, the con­
stant (eD — «ED) must be known. If this quantity is 
not known, an analysis of the overall amplitudes yields 
values for A^A5 In KA and A0A5 In KB, which is of in­
terest in that the standard errors associated with these 
parameters are a measure of how well the amplitude 
data fit the assumed stoichiometry. 

The mechanisms under consideration are in general 
defined by two relaxation times and their corresponding 

(13) In the present work the factor TAFBZTJ2 was always rather small, 
and no loss in precision was introduced by taking the difference in eq 
37. 

(14) It is emphasized that the present results have been interpreted in 
terms of the simplest mechanism consistent with the data available to 
date. It is possible, for example, that relaxation phenomena exist out­
side the time range of our temperature-jump instrument. 
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Figure 1. Overall relaxation amplitudes as a function of total 
benzamidine concentration in the temperature jump titration of the 
trypsin-proflavin complex. The measured amplitudes have been 
corrected for a small transmission change observed with proflavin 
alone [(5/°//°)cE°-o = -0.0036]. The latter relaxation is pro­
portional to CD0 and probably represents the direct effect of tem­
perature on «D. Ordinate values were calculated from the relation 
(S/°//°)corr = (a/°//°)obsd - (CD/CD0)(5/»//0)CE»-C. Conditions: 
CD0 = 2.24 X 10"5M, CE° = 9.1 X 10"6 M, pH 8.1,0.14 Mtris-Cl", 
0.020 M, CaCl2,469 nm, 1-cm path length, temperature = 14°, ST = 
4.4°. The quantities Xi and X2 (eq 38) were calculated for each 
experimental point from analytical concentrations and the two 
equilibrium constants. The data were fit to eq 36 with a bilinear 
regression program. The regression coefficients were a / = 
(4.94 ± 0.04)103 and a2' = (7.0 ± 0.2)103 OD Af"1. Together 
with At46s and ST, these figures yield AHA = 3.1 ± 0.3 and A H B = 
4.4 ± 0.6 kcal/mol. The line in the figure was calculated from 
the experimental values of a i ' and a2 . 

individual relaxation amplitudes. The latter are eval­
uated experimentally by extrapolating the appropriate 
log plots to t = 0, and may be considered by-products 
obtained in any kinetic study. Although AHA and 
AHB can in principle also be obtained from the individ­
ual amplitudes, it seems worthwhile to note that the 
overall amplitude offers certain advantages as an ex­
perimental parameter.15 (1) The overall signal change 
is read directly from the oscilloscope trace, which in­
volves considerably less labor than the graphical evalua­
tion of individual amplitudes. (2) Overall amplitudes 
can be determined with higher precision than individual 
amplitudes, owing to the smaller bandwidths which may 
be employed in the former measurements. For exam­
ple, the data of Figure 1 were obtained at rather low pro-
flavin concentrations (to prevent aggregation), where 
meaningful values for relaxation times or individual 
amplitudes could not always be determined. (3) Rate 
constants can occur in the expressions for individual 
amplitudes (see below), in which case both kinetic and 
amplitude analyses are necessary to estimate thermo­
dynamic parameters. Whenever possible, of course, 
both overall and individual amplitudes should be 
evaluated and shown to be consistent with the same 
mechanism. 

Calculating Individual Relaxation Amplitudes by Ex­
amination of the Reaction Stoichiometry. The Two 
Steps Equilibrate at Very Different Rates. The expres­
sions of eq 23 and 24 may also be used to calculate 

(15) A disadvantage of overall amplitude measurements is that cor­
rection terms may be necessary if volume changes are important or if 
the coefficients (S^JST) cannot be neglected. 

amplitudes of individual relaxation effects. Consider 
the limiting case where step A is fast-enough to equili­
brate independently of step B. Then, to a first ap­
proximation, changes in the concentration of B1 can be 
ignored in the time range of TI, and the amplitude of 
the fast effect will be 

8Pi° c~ A4>ATAS In KA (39) 

At long times, changes in the concentration of B1 be­
come important. Owing to the large difference in equi­
libration rates, the second relaxation effect is associated 
with the overall change in B\ 

(SB1IbOt =* (SB1IbO exp( - t/m) (40) 

where SEifbi can be immediately obtained from eq 24. 
In the time range of r n , the signal change is not simply 
proportional to A<£B, but will include a contribution 
from A0A. The amplitude of the slow process is the 
difference 

SPi SPtot° - 8P1
0 (41) 

or, from eq 32 and 3916 

SP11
0 =* A0„[rB/(l - rArB/»)]5 In ZiT11 (42) 

where 

A</>II = A0B - TAfA4>A (43) 

5 In K11 = 5 In KB - T^fS In KA (44) 

As an example, consider the rapid binding of a sub­
strate to an enzyme followed by a slow isomerization 
of the ES complex (Scheme V). From eq 39 the ampli-

Scheme V 

E + S ^ *- ES - < - ^ (ES)' 
very fast slow 

ATA = ES/E-S KB = ESjES' 

tude of the fast relaxation phenomenon is simply (Table 
D _ _ 

ES 
SP1

0 = A0A KA(E + S) + 1 

A0A = (0ES — <t>S — 4>s) 

SlnKA 

(45) 

(16) Equation 42 is of interest with respect to the "normal-mode" 
analysis of relaxation phenomena,1 where the relaxation times are de­
fined by two completely decoupled "normal concentration variables," Y 

Yi = y , exp ( - / /T . ) (0 
The observed amplitudes, SPi0, may be expressed in terms of normal-
mode extinction coefficients (specific conductivities, etc.), T functions, 
and thermodynamic parameters. 

SiV = AfaTiS In Ki; 5Pn' = A<t>uTn8 In Kn (ii) 

If the forcing parameter is temperature, S In Ki and S In Ku are defined 
by eq 6, where AH is replaced by the normal enthalpies Affi and AHu, 
respectively, which are linear combinations of the enthalpies of the 
elementary steps. When the two steps equilibrate at very different 
rates, the procedure described in the present paper leads to a direct 
calculation of the normal extinction coefficients, T functions, and 
thermodynamic parameters. For example, when step A is decoupled 
from step B, Ki = SAu Yu = SBi, and therefore A</>i, Ti, and AHi 
may be identified with A0A, TA, and AHA- It follows from eq 42 that 
A^n is given by eq 43, and 

Tn = r B / ( l - TAT11P) 

AHn = A H B - TASAHA 

(iii) 

(iv) 

It will be noted that the normal enthalpies and A >̂'s are the same linear 
combinations (compare eq iv above with eq 43 in the text) and that 
the coupling constants introduced in this paper are equivalent to weight­
ing factors in a normal mode notation. 
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It is obvious t h a t / = l/ES for Scheme V. In this 
case it is convenient to express the T functions as (Table 
I) 

From the above definition of a it follows that (ES + 
ES') = E° (1 - a) and [E + 2(ES + ES')] = E%2 - a). 
Equation 52 is then 

r A = 
ES 

KA(E + S) + 1' TB = 
ES 

KB + 1 
r--(1±3^Xf^) ™ 

The coupling constants are then TAf = (KA(E + S) + 
I ) - 1 , r B / = (KB + I ) - 1 , and one sees immediately that 
the bracketed term in eq 42 is 

r B / ( l - TJnIES*) = 

which, when normalized with respect to E0, is identical 
with the expression given in eq II.3.38 of ref I.17 It 
is obvious from eq iv of ref 16 that the normal enthalpy 
associated with r n is 

ES 
(KB + 1){1 - l/(KB + \)(KA(E + S) + 1)} 

(47) 

or, upon rearrangement 

rB/(i - TATB/ES*) = 

AH11 = (AHA - (TA/ES)AHB) = 

AHA-
AH, 

KA(E + S) + 1 
(54) 

ES 
KA(E + S) 

KA(E + S) + 1 

(48) 
^B + 

**• AV--

Substitution of eq 48 and the coupling 
into eq 42 yields 

5 P n
0 = [A<f>B 

ES 

Acj>t 

KA(E + S) + 1 X 

KA(E + S) 
KA(E + S) + 1. KB + 

S\nKB-

A(J) B = (4>ES — 0ES') 

Czerlinski8 and Eigen and DeMaeyer3 have also devel­
oped amplitude expressions for Scheme V. It is of 
interest to compare eq 49 with these earlier results. 

Czerlinski8 has expressed equilibrium concentration 
changes in terms of analytical concentrations and the 
equilibrium concentration of a single component. It 
is readily verified that dividing both sides of eq 49 by 
A0n, making the substitutions E + S = [E0 + S" — 
2ES'(l + KB)], ES = KBES', and rearranging gives 

_ S In KB{K£± + E0 + 5° -
SES' = 2£S'(1 + XB)} - KA~ 1S In KA 

ES ^ A - 1 + (1 + X B - 1 ) ^ 0 + _ 
5° - 2£5'(1 + KB)} 

(50) 

which is equivalent to Czerlinski's eq 8.7. 
Eigen and DeMaeyer3 employed a normal-mode 

notation in their amplitude analysis of Scheme V. 
These authors considered the limiting case E = S, and 
introduced in their equations an "overall degree of dis­
sociation," a = EjE0. If activity coefficients and vol­
ume changes are ignored and if molalities are replaced 
by molarities, eq II.3.37 of ref 1 may be written as 

Equation 54 is equivalent to eq II.3.39 of Eigen and De­
Maeyer. 

Calculating Individual Relaxation Amplitudes. A 
Strong Coupling Exists between the Elementary Steps. 

constant TA/ES Now we consider the analysis of individual amplitudes 
when steps A and B equilibrate at similar rates. When 
the relaxation times are widely separated, the amplitude 
expressions are functions of equilibrium parameters 
only. In strongly coupled systems, however, kinetic 
parameters must also be taken into account. Even 
in the former case the results of an amplitude analysis 
should be substituted into the general solution to verify 
that the assumption of negligible kinetic coupling is 
valid. 

The pertinent rate equations for the systems discussed 
in this paper are (Appendix II) 

5 In ^ A 

KA(E + S) + 1 

(49) 

— = On 
SA1 (0 

ax 
+ O1 

5B1 

—— = o21 
6i O1 

- r Oi 

SB\(p 

O1 

SB\{t) 

O1 

(55) 

(56) 

Y11IE" = TU(AH11IRT)(STIT) (51) 

where F11 is the normal concentration variable related 
to rn. In the present notation Tn is given in eq 48.16 

The latter may be rearranged to a form more suitable 
for comparisons with the derivation of Eigen and De­
Maeyer 

1 + KA(E + SA / E(ES + ES') 
1 + KB E + 2(ES + ES') 

(52) 

where the bik's are functions of specific rate constants 
and equilibrium concentrations. The solution to eq 
55 and 56 is of the form 

SAi{t)jai = ^x1 exp(-Xi?) + A11 exp(-X20 (57) 

SBw)Ib1 = A21 exp(-Xir) + A22 exp(-X2?) (58) 

where the exponential terms (reciprocal relaxation 
times) are the roots of the second-order secular equation 

X112 = 5/2(1 ± (1 - 4P/S*)1/') (59) 

P = O11O22 — b\2b2u S = O11 + O22 (60) 

Although the preexponential terms, A11, are not us­
ually developed in a kinetic analysis, they must be 
known if thermodynamic functions are to be evaluated 
from relaxation amplitudes. By established math­
ematical procedures one can express the A tj in terms of 
the o4/s and X's of_eq 59 and the overall concentration 
changes, SAi and SBi. The result is18 

(17) Since the normal T functions are defined in terms of molar con­
centrations here and in terms of an overall degree of dissociation in the 
application of ref 1, the relation Tn = E°Tua must be borne in mind 
when comparing eq 53 toeqll.3.38 of ref 1. 

(18) The author is grateful to Dr. T. Jovin for discussions concerning 
derivations of the preexponential terms. In the present work the A,/s 
were obtained using eq II.2.9 of ref 1. 
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An = 

A\i = 

A 
»21 — 

A 

(X2 -

(ill -

-bnd/. 

b21SAi 

bn)5Ai -
X2 — Xi 

• baSBi 

• Xi)SAi + buSBi 

Xa — Xi 

U + (bn -
Xa — Xi 

+ (X2 -

- X1)SB1 

MSB1 

(61) 

X2 — Xi 

It follows from the relation 5P(t) = (A<t>A.8AiU)/cti + 
A4>BS.B](O/£J) that the time-dependent signal change for 
the reactions considered here is 

5P (0 = 5JPI° exp(-X!0 + 8Pn
0 exp(-X20 (62) 

where 

SPT0 = (A<t>AAn + A0B^2i) 

SP11
0 = ( A ( ^ 1 2 + A0B^2 2 ) 

(63) 

The amplitudes for coupled equilibria can be given 
in terms of equilibrium and kinetic parameters by sub­
stituting eq 23, 24, and 61 into the relations of eq 63. 
In addition, it can be shown that (Appendix II) 

bn = bnTtJ; i21 = i 2 2 r B / (64) 

and therefore the only elements of the secular equation 
which need be considered explicitly are in and i^.19 

In this way the following expression for SP1
0 was derived 

5Pl° = A*4i-w)ln** + 
A*B l[ i - r I r B / j 5 1 n * B (65) 

where A<£Al and A$B, are the following linear combina­
tions of A<£A and </>B. 

X2 - in( i - r A r B / Q 
A<PA, = X - X A0A -

r B / ( 6 , . + i22 - Xi) 
X2 — Xi 

A J. ^ T A / 

X2 — Xi 

iu + i22rArB /2 - Xi 
X2 — Xi 

The second amplitude is given by 

BP11" = A0 A n [ 1 _ r ^ r B / ' ] a ln KA + 

A0B (66) 

A0B (67) 

rArB/2. 
A * B " [ i - r B

A r B / ' ] 5 1 n * B (68) 
where 

A , - X 1 + J11(I - r A r B / * ) 
^ A 1 1 - Xa _ X i A0A + 

r B / ( i i i + J22 — X2) 
X2 — X1 

A</»B (69) 

(19) The terms 611 and bn are the reciprocal relaxation time expres­
sions for the completely decoupled equilibria A and B, respectively, and 
can be calculated by an examination of the reaction stoichiometrics.20 

(20) G. W. Castellan, Ber. Bunsenges. Phys. Chem., 67, 898 (1963). 

. , X1I
1A/ 

A^B„ = , _ •> A(/> X2 X1 

i n + J22rArB /2 

X2 — Xi 
fA<AB (70) 

Since expressions for rA , r B ) / , in, and i22 can be written 
by an examination of the mechanism, eq 65 and 68 en­
able one to readily calculate strongly coupled amplitudes 
in terms of equilibrium and kinetic parameters. 

It is interesting to consider the limiting forms of eq 
65 and 68 when the two relaxation times are widely 
separated on the time axis. One can readily verify 
that the conditions i u -* X1 and X^X2 -*• °° yield 

A<t» (1 - r A r B / 2 )A0 A ; A ^ B 1 - ^ O (71) 

and thus eq 65 simplifies to eq 39. Regarding the slow 
process, we have the relations 

A*A„ —> rB/(A</,B - rA /A0A) 

A<AB„ — • (A0B ~ rA /A0A) 
(72) 

which reduce the general bPu" expression to the limit­
ing form of eq 42. 

A temperature-jump study of the kinetics and ther­
modynamics of the trypsin-proflavin-benzamidine re­
action system (Scheme IV) was recently reported.7 The 
amplitude results suggested that coupling between the 
two steps was significant, and general amplitude ex­
pressions were used to evaluate the enthalpy of the 
trypsin-benzamidine reaction. The required relations 
(eq 6 and 7, ref 7) were derived immediately from eq 
65 and 68 by assuming that A#B = 0. 
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Appendix I. The Relationships between Overall 
Changes in Equilibrium Concentrations and 
Thermodynamic Functions for a General 
Reaction Mechanism 

From the theoretical treatment of Castellan,20 

it follows that the overall change in the equilibrium 
concentration of a participant in the ath step of a 
general reaction mechanism is related to the total 
change in the advancements of all equilibria by 

ACa m-eAh 

or, in matrix notation 

AC "(0 vA£ 

(A-I) 

(A-2) 

R is the number of elementary chemical reactions 
and the v^'s are stoichiometric coefficients. It 
also follows from Castellan's treatment that the overall 
free energy changes of the elementary steps can be 
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expressed as linear combinations of the overall advance­
ments. 

AG = (RT/V)gAi, (A-3) 

In those cases where the activity coefficients are inde­
pendent of the concentrations of the reactants, the 
elements of the g matrix are 

N 

-jr- (A-4) 
» - 1 ^i 

where N is the total number of different chemical 
species. It is interesting to note that the diagonal 
element gaa is simply the inverse of the T function of 
the ath elementary step OV1)- For small perturba­
tions we may write AGa = — RTAIn Ka. The AC0 can 
therefore be expressed as linear combinations of the A 
In Ka's by taking the inverse of eq A-3 and substituting 
the resulting expression for A£ into eq A-2. 

AC = -Vg-1A In K (A-5) 

Since the matrices v and g - 1 can be written by inspec­
tion, eq A-5 provides a convenient means of expressing 
overall concentration changes in terms of thermody­
namic functions for a completely general reaction 
mechanism. 

In the systems of two coupled equilibria discussed 
in the present paper, the components Ai and Bi 
participate only in steps "A" and "B ," respectively. 
The matrix v is therefore diagonal with Vn = fli and 
Vw = 61. The elements of g are: gn = I V 1 , £22 = rB

_ 1 , 

The thermochemical properties and reactivities of 
simple carbon-centered free radicals have been 

measured often and are reasonably well known.2* 

(1) (a) This work was supported in part by Air Force Rocket Pro­
pulsion Laboratory, Contract No. FO-4611-69-C-0096, and in part by 
the National Aeronautics and Space Administration, Contract No. 
NAS7-472. (b) Postdoctoral Research Associate. 

gn = gn =^_2j(c,Ac,B/£i) = / . It follows from the equa­
tion V-1AC = -8T1A In K that 

AA1Ia1 « - ( F A - 1 I V 1 - /TKr8-1A In KfL -

/A In JSTB) (A-6) 

AE1Ib1 = - ( I V 1 I V 1 - / T 1 O V 1 A In tfB -

/AIBKA) (A-7) 

Equations A-6 and A-7 are equivalent to eq 23 and 24 
in the text. 

Appendix II. On the Relationships between the 
Elements of the Secular Determinant and the Coupling 
Constants for Two-Step Equilibria 

Castellan20 has shown that the relaxation times for 
any chemical reaction mechanism are the eigenvalues 
of the matrix b, which is defined by 

-dAtydf = bA* (A-8) 

The matrix b may be written as a product of two 
matrices r and g, where the latter is defined in Appendix 
I and r is a diagonal matrix whose typical element 
ra is the exchange rate of the ath elementary step. 
In the systems of two coupled equilibria considered 
in the present paper, we have 5£A = 5A1JOi, 5£B = 
8B1Ibu and therefore the linearized rate equations 
corresponding to eq A-8 become eq 55 and 56 of the 
text. The elements of the secular determinant are 
bn = TATA-1, b12 = rA/, ^22 = ^ B I V 1 , and 621 = rBf. 
It is evident that the ratios bu/bu. and 621/̂ 22 are equiv­
alent to the coupling constants T A / a n d TB / . 

There is considerably less information available as to 
the properties of nitrogen-centered free radicals, and 
what there is, is subject to a good deal of uncertainty.21* 

(2) (a) S. W. Benson, "Thermochemical Kinetics," Wiley, New York, 
N. Y., 1968; (b) S. W. Benson and H. E. O'Neal, "Kinetic Data on 
Gas-Phase Unimolecular Reactions," NSRDS-NBS 21, National Bureau 
of Standards Reference Data System, U. S. Department of Commerce, 
1970; H. E. O'Neal and S. W. Benson, Int. J. Chem. Kinet., 1, 221 (1969). 

Very Low Pressure Pyrolysis. V. Benzylamine, 
Af-Methylbenzylamine, and A^N-Dimethylbenzylamine 
and the Heat of Formation of the Amino, Methylamino, 
and Dirnethylamino Radicals18 
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Abstract: VLPP studies of the benzyl-amino bond homolysis in benzylamine, N-methylbenzylamine, and N,N-
dimethylbenzylamine yield heats of formation of the amino, methylamino, and dirnethylamino radicals, respectively, 
if RRKM or RRK theory is used to relate the low-pressure rate constants measured to the high-pressure Arrhenius 
parameters. Values of the high-pressure A factors were obtained by analogy with the relevant alkylbenzenes. 
Heats of formation for the three radicals are 47.2, 45.2, and 38.2 kcal/mol, respectively. These lead to DH°-
(NH2-H) = 110, ZW(CH3NH-H) = 103, and DHC'((CHa)2N-H) = 95 kcal/mol, all considerably higher than 
previously reported. 
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